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Abstract—Distributed Estimation scheme has been widely
used in sensor networks. Through various approaches, sum
of bits, Sigma-Delta modulation, and source coding, this paper
implements the above techniques for distributed estimation and
provides a new one called Quantization Region Allocation. In
the end, this paper analyzes the performance (minimum mean
squared error) and demonstrates performance approximating the
soft decision scenario.

Index Terms—distributed estimation, source coding, Sigma-
Delta modulation

I. INTRODUCTION

The problem we consider in this paper is associated with

Distributed Source Coding (DSC) for multiple sources. DSC

problems regard the compression of multiple correlated in-

formation sources that do not communicate with each other,

as Fig. 1a shows. By designing the K encoders for differ-

ent source and the joint decoder, DSC is able to shift the

computational complexity from encoder side to decoder side,

therefore provide appropriate frameworks for applications with

complexity-constrained sender.

The lossless version of this problem with discrete sources

was solved by Slepian and Wolf [1], using a random-binning

approach. It is shown that for lossless scenarios, cooperation

among encoders does not improve the sum-rate boundary. For

K = 2, the achievable rate region R1,R2 for source Y1,Y2 is

given by

R1 ≥ H(Y1|Y2)
R2 ≥ H(Y2|Y1)

R1 +R2 ≥ H(Y1, Y2)
(1)

Practical distributed lossless coding schemes have been

proposed [2], [3] that are close to the Slepian-Wolf bound.

However, when lossless coding is not possible, rate distortion

theory must be taken into account. This problem has been

considered by Wyner and Ziv [4] for the case where the

decoder has access to side information about the source.

When Y1, Y2 · · · , YK are influenced by a source X , K
sensors observe independently corrupted versions of X . The

sensors encode their observations without cooperating with

one another. This is the so-called CEO problem and was

first studied by Berger, Zhang, and Viswanathan [5] in the

context of discrete memoryless sources and observations. The

fusion center and K sensors are referred to as CEO and agents
respectively, which is illustrated in Fig. 1b. Prabhakaran, Tse,

Ramchandran [6] have shown that if X is zero mean and if
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(c)

Fig. 1: System structure for (a) distributed source coding (b) CEO
problem (c) quantized distributed estimation.

the transmission from agents to CEO is error-free, the K-tuple

rate region (R1, R2 · · · , RK) is given by

R(D) =
⋃

(r1,r2··· ,rK)∈F(D)

RD(r1, r2 · · · , rK) (2)

where RD(r1, r2, · · · rK) and F(D) is given by (3) and (4)

respectively.

The system structure for our problem is depicted in Fig. 1c.

In the first approach, we simply use the number of 1’s (+A)
and 0’s (−A) sent from K sensors to estimate the value of X ,

namely,

X̂ = μ+ (K1 −K0)B (5)

where K1,K0 denote the number of 1’s and 0’s respectively

and B is a constant needed to be determined. This can give a

satisfactory result. To improve the performance, Sigma-Delta
modulation (Σ-Δ modulation) [7] is introduced. In addition,
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RD(r1, r2 · · · , rK) =
{
(R1, R2 · · · , RK) :

∑
k∈A

Rk ≥
∑
k∈A

rk +
1

2
log

1

D

− 1
2
log

(
1

α2
+
∑
k∈Ac

1− exp(−2rk)
σ2

)
, ∀ non empty A ⊆ {1, · · · , L}

}
(3)

F(D) =
{
(r1, r2 · · · , rK) ∈ R

K
+ :

1

α2
+

K∑
k=1

1− exp(−2rk)
σ2

=
1

D

}
(4)

when it comes to quantization at each sensor, jointly optimize

the quantization region would be considered. However, to

simplify the computation, we combine Lloyd Algorithm with

weighted bits, providing a new approach called Quantization
Region Allocation in section IV.

II. PROBLEM STATEMENT

As Fig. 1c shows, K sensors is used to detect the source

parameter X in the following way. Assume that the source X
is Gaussian distributed with mean μ and variance α2. The k-th
sensor has noisy observation Yk = X+Nk, where Nk is i.i.d.
Gaussian with mean 0 and variance σ2. In addition, the data

sent from each sensor Y ′
k also suffers from noise N ′

k, which

is assumed i.i.d. and has same distribution as Nk. The fusion

center finally determines X̂ based on Zk = Y
′
k + N

′
k, k =

1, 2, · · ·K. When each sensor noiselessly sends its observation

to Fusion Center, there are two possible ways: to quantize (i.e.

to determine between {A,−A}, also known as hard decision)

or not (i.e. just to send observed value, also known as soft

decision).

III. BASIC APPROACH

A. Sum of Bits

Assume that each sensor sends A to the receiver if Yk > μ,
and sends (−A) otherwise. The fusion center first detect

whether A or (−A) is sent from each path. Define the

Bernoulli random variables {Ii}, i = 0, 1 · · · ,K, where

Ii = 0 if A is decided and Ii = 1 if (−A) is decided. Our

estimator is given by

X̂ = μ+

K∑
i=1

(−1)IiB = μ+NB (6)

Furthermore, if we define the random variable M =
∑K
i=1 Ii,

thenM |X ∼ B(K, p), where p = Pr(Ik = 1|X). Since N =
K − 2M , the mean squared error can be written as

E[(X − μ−NB)2]
=E
[
E[(X − μ− (K − 2M)B)2|X] ] (7)

Differentiate (7) with respect to B yeild the optimal value

B =
−2E[(X − μ)p]

(8− 4K)E[p]− 4E[p2] +K (8)

The result is shown in Fig. 2. Here we set μ = 1 and

A = B. For the simulation curves, different values of B has
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Fig. 2: MMSE by sum-of-bit approach.

been tested, where B varies from 0.05 to 0.5 with step size

0.05, and the optimal value of B is selected.

From Fig. 2 it can be found that the MMSE rises a little

when σ increases, while the MMSE rises more when α
increases. This is intuitive since the variance of noise can be

recovered with large K. But it is harder to estimate X when

the source itself has large variance.

B. Σ-Δ Modulation Approach

Sigma-Delta Modulation can also be used to deal with the

problem. This is done by adding a filter and oversampling the

observations in front of the fusion center from each path, as

Fig. 3 shows. After collecting the 1-bit information from each

path, we make the estimation by

X̂ = μ+ (−k1 · α) + k2 ·
K∑
i=1

bi
2M

(9)

where k1, k2 are parameters needed to be defined, 2M is the

number of decimation, and bi is the number of ones density

of input Zi.
The value of k1, k2,M has influence on the performance.

To minimize MSE, we first fix k1. Then optimize k2 by

simulation. Fig. 4a shows the performance for different k1.
In fact, the optimal value of k1 is about 0.8. This may

be associated with the optimal 1-bit quantization level for

Gaussian random variable, i.e. the quantization level for zero-

mean Gaussian with variance σ2 is ±σ
√
2/π. On the other

hand, the MMSE for different value of M is depicted in Fig.
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Fig. 3: The modified fusion center.

0 2 4 6 8 10
2

4

6

8

10

12

14

16

K

M
M

S
E

k1=0.50

k1=0.75

k1=1.00

k1=1.25

k1=1.50

(a) M = 4, k1 = 0.50, 0.75, 1.00, 1.25, 1.50.
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(b) k1 = 0.8, M = 1, 2, 3, 4.

Fig. 4: MMSE for (1) different k1’s, (2) different M ’s by

Σ−Δ modulation approach.

4b. It can be seen that the performance for M ≥ 2 is about

the same.
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Fig. 5: A distributed estimation system with general

observation distribution.

C. Source Coding Approach

A more general system model for distributed source coding

has been considered by Gubner [8], as Fig. 5 shows. Each

sensor k processes its measurement Yk to obtain an output

Zk. Each Zk is then transmitted to the fusion center. Assume

that the use of error-correcting codes permits us to view the

channel as noiseless. For each Yk, Ak1, · · ·AkN is a partition

of the real line, R. In other words, it quantizes Yk in N levels.

The sensor output Zk is then defined by

Zk �
K∑
i=1

(i− 1)IAki(Yk) (10)

where IA(y) is the indicator function given by

IA(y) =

{
1 , y ∈ A
0 , y /∈ A (11)

At the fusion center, Z1, · · ·ZK is collected and for sim-

plicity, the estimator X̂ is defined by

X̂ =
K∑
k=1

N∑
i=1

ckiI{i−1}(Zk) (12)

The algorithm for optimizing the partitions

{A1i}Ni=1, {A2i}Ni=1, · · · {AKi}Ni=1 and the parameters

cki, i = 1, 2, · · · , N , k = 1, 2, · · · ,K is given in [8],

which is straight-forward. However, the computation makes

it not realistic for implementation. Thus, we introduce

another method to define the partitions {Aki}Ni=1. Consider a

quantization problem: A continuous random variable X are

needed to be quantized in K bits. How to minimize the mean

squared error by specifying the quantization levels and step

sizes? If the step sizes are identical for each quantization

region, it is called uniform quantization. Nevertheless, to

minimize MSE, nonuniform quantization must be used, in

which the step sizes may not be of equal length. This can be

done by the well-known Lloyd algorithm [9].

The algorithm operates as follows. Given an initial quanti-

zation region R1,R2, · · · ,RM , whereM = 2K , we calculate
the conditional mean for each region.

ai =

∫
Ri
xfX(x) dx

P (x ∈ Ri) , i = 1, 2, · · · , 2K (13)

where ai is the quantization level for region i. Then the region

Ri = {x|bi−1 ≤ x < bi} is updated by ai’s.

bi =
ai + ai+1

2
, i = 1, 2, · · · , 2K (14)
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Fig. 6: Detection rule for sensor k, k = 1, 2, 3.

with b0 � −∞, b2K+1 = ∞. After the regions Ri, i =
1, 2, · · · , 2K are decided, repeat the calculation of ai’s. This
iteration stops until the difference of MSE between two

iterations is small enough.

Next, we could connect this problem to our original prob-

lem. This is illustrated by Fig. 6. For instance, if K = 3, we
first use Lloyd Algorithm to generate the quantization levels

and regions for the random variable X . The detection rule at

each sensor is described as follows.

Z1 =

{ −A (bit 0), if Y1 ∈ R1

⋃R2

⋃R3

⋃R4

A (bit 1), otherwise

Z2 =

{ −A (bit 0), if Y2 ∈ R1

⋃R2

⋃R5

⋃R6

A (bit 1), otherwise

Z3 =

{ −A (bit 0), if Y3 ∈ R1

⋃R3

⋃R5

⋃R7

A (bit 1), otherwise

In other worlds, we use the quantization rule obtained by Lloyd

Algorithm for X to quantize Yk in sensor k. If the k-th bit is 0,

sensor k sends (−A), otherwise sends A. Finally, the fusion

center combines these bits and maps back the quantization

levels ai, which is used to estimate X . The simulation result

is illustrated in Fig. 7, where μ = 5, α = 10, σ = 1.

IV. QUANTIZATION REGION ALLOCATION

As the Fig. 7 shows, the MMSE doesn’t decrease mono-

tonically while the number of sensors increase. This may be

due to the fact that bits sent from various sensors are not

equally weighted. Namely, the most significant bit, which

decides whether the source X locates on the left of mean

μ or on the right, depends on one sensor only. Though every

sensor represents different bit, these bits sent by sensors are not

trustworthy since the noise exists in two stages of transmission.

Therefore, we must adjust our strategy. Only few bits are

used in estimation. Besides, the number of sensors which
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Fig. 7: MMSE for μ = 5, α = 10, σ = 1 by source coding

approach.

(a) α = 10.

(b) α = 11.

Fig. 8: MMSE for μ = 5, σ = 1 after bit allocation.

are used to decide specific bit is optimized. The simulation

goes as follows. We use three bits to quantize the source. Let

a1, a2, a3 be the number of bit 1,2,3 repectively, where a1
stands for the most significant bit (MSB) and a3 represents

the last significant bit (LSB). Since MSB is more important,

assume that a1 ≥ a2 ≥ a3 and running simulation for all

possible allocation of bits. The result is shown in Fig. 8.

In Fig. 8, we also attach the table for the bit allocation. It

can be seen that two bits are enough for estimation. Namely,

Instead of increasing the resolution, it is more important to

increase the accuracy of every bits, especially the MSB. In

addition, notice that the third bit is used in Fig. 8b. This is

227226226



due to the larger variance used in Fig. 8b than Fig. 8a. While

dealing the source with larger variance, more bits are worthy

to use.

V. COMPARISON TO SOFT DECISION

Since the data sent from each sensor Zk suffers from two

noises, Nk and N ′
k, Zk given X is Gaussian distributed with

variance 2σ2. Therefore, the a posteriori probability of X
given Z = [Z1 Z2 · · ·ZK ] is

fX|Z(x|z)

=
1

fZ(z)

K∏
k=1

1√
4πσ

e−
(zk−x)2

4σ2 · 1√
2πα

e−
(x−μ)2
2α2

=g(z) exp

⎡⎣− 1

2σ2p

(
x− σ2p(

μ

α2
+

1

2σ2

K∑
k=1

zk)

)2
⎤⎦

(15)

where σ2p =
(
K
2σ2 +

1
α2

)−1
. Since the exponent in (15) is

quadratic function of x, fX|Z(x|z) is Gaussian. Note that the

estimator under mean squared error criterion is the conditional

mean of the a posteriori random variable. Thus the MMSE

estimator is given by

X̂(Z) = σ2p

( μ
α2
+

1

2σ2

K∑
k=1

Zk

)
(16)

And the corresponding MMSE is

E[(X − X̂(Z))2] =
(
K

2σ2
+
1

α2

)−1

(17)

This should be the optimal performance for estimatingX since

in soft decision, we have assumed that all of the sensors can

directly transmit the unquantized data they receive, which is

not true in realistic.

Next, we compare the performance among optimal soft

decision and the hard decision methods mensioned above. For

soft decision, 8-FSK is used to transmit quantized data at each

sensor. Thus, in these hard decision methods, the received data

is oversampled at each sensor and the 1-bit data is transmitted

using 8 BPSK channels simultaneously for fair comparison.

VI. CONCLUSION

From Fig. 9, we can see that the performance of Σ-Δ
method is almost unchanged since it has oversampled the data

at each sensor and it oversamples again at the fusion center.

Thus, adding more sensor has little effect on the performance.

Besides, the MMSE for Σ-Δ method is lower than direct

method when the source variance is 100. This is intuitively

due to the fact that oversampling for Σ-Δ method has more

effect on the MMSE while the variance is large.

For bit allocation method, the MMSE decreases until more

sensors are used. Since we let different sensors be responsible

for different bits, which increases the resolution, and optimize

the quantization region. The performance of bit allocation

method is always better than other two hard decision methods

when the number of sensors increases. Finally, proper win-

dowing techniques may further improve the performance.
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Fig. 9: MMSE comparison for μ = 5, σ = 1.
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